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A FTLEET MAINTENANCE SYSTEM DESIGN MODEL

by
® hh
Ronald W. Boling end Frederick S. Hillier

ABSTRACT

A general model for the design of fleet msintensnce systems 1nvoiving
several crews working in kocqucncc is developed. Emphasis 1is placed on
optimizing the system for scheduled periodic maintenance activities. Results
are given for the case where crew service times are exponentially distri-
buted. When mean service times for all crews are equal, an optimal system
configuration is determined as a function of the aumber of crews, cost of

crew activities and cost of a fleet unit's idle time.
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A FLEET MAINTENANCE SYSTEM DESIGN MODEL
INTRODUCTION

pogpe—

Fleet maintenance systems typically are designed to service fleet units,
such as trucks, airplsnes, cars, etc., on a scheduled maintenance program as

well as emergency repair basis. Basic system design varisbles include the

[

‘division of work between service crews, level of service provided by such

e

crews and a limit on the numbar of fleet units idle st one time.

A genersal model for the design of such systems is developed and described

- *, ~

in this article. Since in a given fleet environment the cost and effect of

5w

emargency repairs tend to be independent of system design, mu is placed
on optimizing the system for scheduled maintenance activities.

Tﬂﬁ.

Typical fleet maintenance systems are made up of sultiple crews and
skills which sust be scheduled in a fixed sequence to complete specific

saintenance tasks on each unit. Task times usually vary considerably from one

By g A

Lev

unit to the next. Studying such systeas is important because of the large

A

nusber of orgsnizations confronted with this problem and the usguitude of
x investment and expense coumd by such systems.

The particulsr model developed hete considers s fleet of aerbitrary sisze

AL Ge e B

and a service facility cousisting of a finite number of crews working in a
fixed sequence on each fleet unit removed from operstion., A limit {s placed
on the aumber of units which can be removed from the operating fleet at any
one time. Once the limit is reached, the next scheduled fleet unit sust wait
until another unit is relessed from the maintenance systea dbefore it can

enter. In its general form, system costs are a function of scheduled

s
~EN M

ke maintenance, emergency repairs and opportunity or cspital costs sssociated
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with idle opersting uaits. Capital costs snd operating expeases associated

with housing the systea are not considered. In the general model, crew

service times sve considered to be independent random variables with a genersl 3
distridution. Newsver, the asaaslysis here is restricted to the case where

service times sve empemsatially distributed. When msan service times for all

crews are oqual, an optimal system configuration is determined ss a fumction

of the sumber of crews, the coet of crev activities, and the cost of a fleet

vait's idle time. Such coanfigurations sre described in terms of the limit oa

the number of waits which can be removed from the operating fleet at any one

time and the level of service rate necessary for each crew,

GENERAL COST MODEL

Consider the following model.
: N
Z = B(F(R(p,v))] + Y(L{p,v)) +] CCuk)
kel

vhere
Z = expected total system cost per unit time (in steady state)
B(*) = expected cost sssociated with emergency repairs per unit time

Y(*) = expected cost associated with fleet units idle during their
removal from the operating fleet per unit time

C(uk) » expected cost associated with maintenance crew k per unit time
and
7(*) = expected number of uuits requiring emergency repairs per unit time

R(*) » expected production rate (rate of completing maintenance of units)
of asintenance systen

b ® (l[&k])'l. the service rate for crew k .




vhere
‘“kl = the expected servics time for crew k
! B = the vector vhose components are the “k(k = 1,2,3,00e, N)
. N = the number of crews in systea

Y = saximum number of fleet units removed from operating fleet at any
point in time which are available to msintenance crews

L(*) = expected number of fleet umits in the maintenance system.

Components of cost cousidered here relate to emergency repair,

s

opportunity costs of idle units snd crew costs associsted with scheduled

5 usintensnce activities. It is recognized -tluc actions can bde :M and, where
: possible, should be taken, to reduce B(°); however, for our purposes B(°)
is considered to be constant and so does not tnflu.ﬁu the design of the

N - maintenance system required to' service scheduled n;intomeo asctivities.

. SEQUENTIAL CREW MODEL

; The problem now becomes that of solving for the valuss of Bps Bgo eeoy

} My aod v that minimize total system cost, where the chosen valus of each

. B, then would be (approximately) reslized by sdjusting the size, composition,
b and mode of operation of crew k appropristely. For those systems which are
: kept operating at as close to capacity as possible, given the values of these
ii design variables, the Sequential Crew Model [1] can be used to provide systea
': production rates as a function of the number of crews, crew service rates, and
g the limit on the number of flaet units svailable to the maintensnce system.

;

;

:
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The assumptions made by this model are the following:

(1) The system of N crews is available continuously.

(2) These N crews always perform their tasks on each unit in the same

[

fixed order, whers the next crew begins (if not already occupied on
another unit) as soon as the preceding crew ends.

(3) .For crew Kk, tha service times for the respective units are
independent and identically distributed according to sm exponentisl

X distribution with parameter Ry *

(4) No more than y units can be "in the systen” (already begun by at
least the first crew but not yet finished by the last crew) at one
time. ' |

] (5) Except wvhen the system is at this upper liait, the first crew always

t starts work on another unit as soon as it completes its work on its

current unit.
The following results thea are obtained from the Sequential Crew Model.

R(p,v) = 4, 153’1

!
L(p,y) = v.»
L, ‘El 1°1
vhere

?1 = gtationary probability of being in state { of the
underlying Markov chain. |
V1 = nguaber of units in the system in state { .

$ = the set of '1 vith cthe first crew busy.
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A more complete description of this model and its characteristic behavior
can be found in [2].

It can be rnth;y observed that this model can be formulated as a
continuous time parameter Markov chain; hence, the Pt can be obtained from
the solution of a set of linear equations. Since most practical systems
require large sets of equations, the reader may wish to refsr to [5] and [6]
for procedures for simplifying solution methods.

Means are now avsilable to determine an optimal design by calculating
R(*) and L(°) and using sn appropriste numerical search routine. An
example using a direct aumerical aspproach is given in Appendix A for
11llustrative purposes.

BEHAVIOR OF BALANCZD SYSTEMS

A very useful and frequently observed case of this system occurs when
expected service times of all crews are equal, i.e., W =8 for all k . An

exaaination of the transition intensity matrix for this case reveals that it

is doubly stochastic. Hence,

P31 forau 1,

vhere m 1is the number of states in the Markov Chain and P, is the

i
stationary probability of the system being in state i (see [4]).

This fortunate relationship mskes it possible to calculate P1 by
counting the number of states in the Markov Chain representing a particular
systea. Such systeas and respective Markov Chains are defined by a given

number of crews, crew service rates, and a limit on the number of units

allowed in the system.
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OPTIMIZING BALANCED SYSTEMS

T

u Derivations of R(*) and L(*) for balanced systems are given in
f
> Appendix B. For such systems
N | . . (Y
bt R(e) = p (Y"'"-l
L(e) =v - -1
3 i N(y+N-1) °*
]
where p 1s the common value of the B (k= 1,2,00.,N)¢
3
= N
o Now assume that C(p) = | C(s,) 1s an incressing linear function
' k=1
" of p,
o C(p) = cy where c > 0 ,
and that Y(L(*)) 41s an increasing linear function of L(°*) ,
-
‘§: Y(L(*)) = ML(*) where M > 0 .
-
N Further assume that, for a fixed integer N > 1, the objective is to select a
'; (positive integer) value of y so0 as to
Y
- ainimize Z = cu + ML(p, v)
s (») subject to
- R(p, v) = B* .
? Thus, R* {is the preestablished mean rate at which routine maintenance of

fleet units would bde scheduled. (Note that R* 1ig the mean rate racher than

AN

the actusl rate over any short period of time, since the actual rate at which

\

units enter the system is u when the number already in the systen is less

than v, whereas this rate becomes zero while this nuaber equals vy.) Given

S
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the number of units in the fleet, the value chosean for R* normally would be
based on the desired maintensnce cycle (time between scheduled maintenance
events) for the individual units.

For any given choice of vy, satisfying the constraint of the problem
amounts to choosing the valus of i that equates R(p,Y) with R*, namely,
(*) po= R I"'_:‘l

Therefore, (he problem (P) can be restated as selecting a (positive integer)

valuse of Y so as to

’ - L] L“-—l- - =1 °
(e*) ninimize Z = cR* { Y ] + Mly 7 vﬂl-l)l
To begin solving this problem (P'), the integar restriction shgll de

dropped temporarily in order to treat y as a continuous variable. Call this

relaxed probles (F). After considerable slgebra, the first two derivatives
can be expressed as

v v (y+ti-1)2
822 | pgery (&M
P P )

The common approsch now to finding a global minimum would be to set the first
derivative to zero and solve. Howaver, since 2Z is not a convex function
of v in general (note that the second derivative becomes negative for
sufficiently large vy 1f M 1s large relstive to cR*), further anslysis is

needed to show that this necessary condition for optimality also is

sufficient. This {s done by proving the following theorea.
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Theorem 1: For problem (5), there exists a unique positive y = y* guch
that
<0, 1f 0 <y < y*

§-z- - - yh

20, 1f v O>vy*

so Y = y* achieves the global minimum.

Proof: Since N > 2, it is clear that

2

$2 0,525 0 for sufficiently small vy > 0 .
.3 5Y2
Also note that
82 M
llag= =M=-= >0,
you 8y N
Since %—f- is a continuous function, it thereby assumes the value zero at

some point by the Intermediate Value Theorem. The proof now reduces to

showing that
2
[-¥4 872
= () = >0
B0t
since this implies that %3— can never return to zero {(or less) as Yy
82 822
increases beyond the first zero point of .o because -3 is a
Y sy

continuous function and so must be strictly positive when -g% is strictly

positive but sufficiently close to zero.
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More generally, note that

-1 4 _ CR®(N-1) (N-1)M
Sy £0= 2 *

3 <0
Y (y+N=-1)

_)_3_ [ca*grzi-lz 0] B,

Y (y+N=-1)
- 2cR*§N—l) - (N—l)u3 5 0
Y (y+N-1)
2
- i—;‘ >0,
Sy

which completes the proof.

Corollary: If y* {s integer, it is the optimal solution for (P') or
(P). If y* 1is not integer, then this optimal solution is obtained by

rounding y* up or down to an integer and selecting the one with the smaller

value of Z for (P') .

Unfortunately, solving directly for y* 1is not easy because it involves
solving a quartic equation. However, the following theorem gives an upper
bound on y* that is relatively tight when M 1is small relative to cR* .
This bound then provides the basis for an efficient algorithm for solving

(P') or (P) , as summarized in the corollary to Theorem 2.

Theorem 2: The value y = y* identified in Theorem ] satisfies the

inequality,

Yy* <A,

where
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82 M cR*
ay>(“‘”[u 214 for all y >0,

Y

it iamediately follows from Theorem 1 that y* {s bounded above by the

positive root of the equationm,

Y

which ylelds the desired result.

Corollary: Let A* be the least integer greater than or equal to A, and
let Z(n) be the valua of Z for (P') when y = n . An optimsl solution

for (P') or (P) chen is idencified by the following simple algorithm:

(0) Set n = A® ,
(1) If n=1]1, then vy = 1 {s optimal so stop.
(2) Calculate Z(n) and Z(u-1) .
(3) 12 Z(a) £ Z(n=1), then y = n is optimal so stop. Otherwise,
reset n = n~] and return to Step ! for anmother iteration.
Once the optimal values of Y has been obtained, the corresponding optimal
valus of u 1is obtained by pluggiang this value of y 1into equation (*).
A numerical example illustrating this algoritha is presented in

Appendix A.

10
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It has been assumed so far that the number of crews N has been fixed in
advance. If N actually is a design variable in addition to vy, then an
overall optimal solution for both N and vy can be obtained by repeating the
above algorithm fét each of the several possible values of N, and then

choosing the one (along with its optimal vy) that yields the overall minimum

for 2Z.

Conclusions

The use of the sequential crew model makes it possible to analyze and

evaluate systems perforaing saintenance on fleet units. When such sequential

"crew systems are balanced, then it is relatively straightforward to calculate

optimal values for the limit on the number of units allowed in the msintenance

system at any one time and optimal crew service rates.
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APPENDIX A
Example Illustrating Solution Procedure
for Optimizing Balanced Systems

Cousider s fleet of 200 units, each requiring programmed maintenance
every six months. This establishes R* at 33%- units to be scheduled per
month on the average. Assume it has been determined that the cost for keeping
s fleet unit idle would be $600 per month, and experiencs or work standards
indicate that total crew costs would be $10,000 per month {f the service rate
for each crew were 33-;- units per month and each crew could work
independently full time and without interference from other crews. Also
consider that the skills involved nacessitate three crews working in sequence.

Thus, using notation defined previously and one month as the unit of
time,

u-a.v-ss%-.c-saoo,u-seoo.

Applying Theorea 2,

300¢333)(3)
Y.S‘.\/ 3!‘ -m.

600

8o that A* = §, Now applying the algoritha outlined in the corollary to

' Theorss 2 yields the following results:

Iteration 1: Z(8) = $16,180 and 2(7) = $16,124.
Since 2(8) > zZ(7), do another iteration.
Iteration 2: 2(6) = $16,183.
Since 2(7) < Z(6), stop.
Yy =7 1is optimal.

13




% )
Q The numerical calculation of these 2Z(v) 4is summarised below.
: Y » L(s,v) cB M(p,v) Z(v)
s | a3 63 $12,500 | 93,680 | $16,180
1 | % - 312,857 | 93,267 | $16,124
4 5;' » ’ ’
Wy
4
4 6 | sz o} $13,333 | s2,850 | $16,183
%
S Hence, the optimal design allows a meximm of 7 fleet units idle at any
';.‘; one time (v = 7) and provides sufficient manpower, etc., in each crew to
N
> achieve & crev service rate of 42% units per sonth. Such a system will
3 process an sverage of 33%- fleet units per moath at the lowest expected total
’;3 cost. ‘
N
b
b
4
w
3
s
X
.
5
b3
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APPENDIX B
Derivation of R(*) and L(°)
for Balanced Systemss
To detersine th; expected aihtcl service rate, R(°), for a balanced systea,
one must first determing =, the total number of states in the Markov chain.
These states indicate how many of the y units are with each of the
respective crews, where any number larger than one for the first crew
indicates that thess extra units are not yet in the system because the first
crew hasn't started on them yet. Therefore, m 1is equal to the number of ways
vy {indistisguishable objects can be partitioned among ¥ cells, which
elementary combinatorial analysis (e.g., see [3, p. 38]) gives as

)

(hoc. that having more than one object at the first cell corresponds to having
those units not yet in the system because the first crew hasn't started work
on them yet.) The aumber of states in which the first crew is busy is equal
to the number of ways (v - 1) 1indistinguishable objects can be partitioned
among N cells (since one additional object has been preassigned to the first

cell), or

13
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Since the Markov chain is doubly stochastic, the expected system service rate
then can be calculated as

R+ = (2 = (

_I_._)
Yy+N-=-1

The expected number of fleet units in the maintenance systea, L(°*), can

be determined in the following manner. Trivally, this expected number would

be v 1if v units were in the system at all times. Howaver, there are times
vhen “empty spaces” (less than Y units) exist in the system. From the
cyclic queues equivalent of the sequential crew model (see [7, pp. 174-177]),
it can be shown that the total number of empty spaces which oceur ian all the
states of the Markov chain is equal to the number of ways N indistinguish-

able objects can be partitioned among (v - 1) cells, or
N+y -2
E= .
N

. E -1
Uy =y - ge v - D -

Hence,

16
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